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The authentication of extra virgin olive oil and its adulteration with lower-priced oils are serious
problems in the olive oil industry. In addition to the obvious effect on producer profits, adulteration
can also cause severe health and safety problems. A number of techniques, including chromatographic
and spectroscopic methods, have recently been employed to assess the purity of olive oils. In this
study Raman spectroscopy together with multivariate and evolutionary computational-based methods
have been employed to assess the ability of Raman spectroscopy to discriminate between chemically
very closely related oils. Additionally, the levels of hazelnut oils used to adulterate extra virgin olive
oil were successfully quantified using partial least squares and genetic programming.
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INTRODUCTION

Authentication includes a wide number of aspects, from
adulteration to mislabeling or misrepresentation of the cultivar
or country of origin, and it is a crucial matter for the food
industry, where raw and elaborated products should undergo
strict quality controls and be fully tested for regulatory and
health specifications. In particular, authentication is an important
issue for the olive oil industry, which has, in the past few years,
become popular due to the health benefits of olive oil (1, 2).
To increase profits, unscrupulous dealers may be tempted to
add lower-priced vegetable or nut oils to fresh extra virgin olive
oils, which in addition to being unfair to the consumer, in terms
of the cost of this apparent premium commodity, may also cause
severe health and safety problems (3). Consequently, there is
no doubt that the detection of adulteration needs to be addressed
in order to ensure the quality of olive oils. Recently, hazelnut
oil has been used to adulterate extra virgin olive oil and olive
oil due to its great chemical similarity to olive oils; in particular,
hazelnut and olive oils have similar triacyglycerol, total sterol,
and fatty acid composition. Moreover, due to the fact that the
content of a number of compounds in the adulterated oils may
be within the limits set for genuine olive oil, it has been reported
that such an adulteration seems difficult to detect at low
concentration levels (5-20%) (4).

Authenticity and adulteration have been extensively monitored
using techniques that characterize (qualitative and quantitative)
the composition of oils. Most of the work on authentication of

edible oils is based on chromatographic techniques, including
high-performance liquid chromatography and high-resolution
gas chromatography, which have been mainly applied for the
quantification of fatty acids, triglycerols, sterols, and hydrocar-
bons (for references see (5)). Recognition of adulterated olive
oils can also be performed in some cases by direct analysis of
a specific component; however, it has been demonstrated that
some adulterations are not detectable if minor components are
removed by refining under extreme conditions (6). Therefore,
classification of various oils and identification and detection of
a given adulterant by chromatographic techniques have been
complemented by mass spectrometry, including pyrolysis-MS
(7) and electrospray ionization-MS (8), nuclear magnetic
resonance spectrometry (9-11), and vibrational spectroscopy
(12-18). These techniques differ from chromatography in that,
rather than separating the components of a given oil sample
prior to analysis, the resultant spectrum is considered as an
unequivocal “holistic” fingerprint of a given oil. These finger-
print spectra need to be analyzed by chemometric methods such
as multivariate statistical analysis and artificial neural networks
in order to effect the successful detection of the adulterant(s)
(19, 20).

With respect to vibrational spectroscopy, it has been reported
that near-infrared, FT-IR and FT-Raman in combination with
multivariate analysis could successfully discriminate between
different oils (14) and also successfully model the composition
of binary mixtures of olive oil adulterated with corn, soybean,
and raw pomace oils (13), non-high-oleic sunflower oil (21),
or pomace oil (16). These reports show the suitability of
spectroscopic techniques to discriminate between chemically
similar oils and encourage the development of these techniques
to study adulteration of olive oils with more chemically similar
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oils. Thus, one of the aims of the present study was to
investigate, with aid of Raman spectroscopy, the chemically very
similar adulterant refined hazelnut oil mixed with extra virgin
olive oil.

It has been argued that Raman spectroscopy is of very limited
use in food and biological applications, due to fluorescence of
the samples and also to the difficulty of obtaining high-resolution
spectra (22-24). However, relatively recent instrumental ad-
vances (e.g. the design of new holographic filters that effectively
reject the laser excitation and the development of high-sensitivity
photoelectric detectors) have made possible the accurate col-
lection of Raman spectra, by either FT- or dispersive-based
Raman spectrometers (25).

We believe that Raman spectroscopy may provide the
necessary resolution to discriminate between a genuine extra
virgin olive oil and an extra virgin olive oil adulterated by
hazelnut oil. The Raman analyzer used in the present work was
a dispersive instrument employing a near-infrared 780 nm laser
and equipped with a fiber-optic sampling station, thus offering
remote sampling capabilities that make such a system ideally
suited for industrial processes andin situ monitoring of olive
oil adulteration.

The aim of the present study was to assess the potential of
Raman spectroscopy with appropriate chemometric analyses to
distinguish between very closely related cultivars of extra virgin
olive oils and hazelnut oils. An additional aim was to quantify
the level of hazelnut oil-extra virgin olive oil mixtures.

MATERIALS AND METHODS

Oils. All oils used in this work, including a collection of Italian
extra virgin olive oil from different regions and cultivars, a hazelnut
oil collection, and oils used to prepare olive oil-”adulterant” mixtures
were supplied by G.B. Note that adulteration is not just a problem that
affects the production of oils in Italy. The present study has investigated
a set of Italian oils as a model set, because we know these to be
authentic. Details of the oil studied are given inTable 1. All oils were
stored at 4°C. Prior to analysis, oils were allowed to stand at room
temperature for at least 24 h.

Binary mixtures of extra virgin olive oil-sunflower oil and extra
virgin olive oil-refined hazelnut oil were prepared in the concentration
range 0-100% of extra virgin olive oil in increments of 5%.

Raman Spectroscopy.Raman spectra were excited with a near-
infrared 780 nm laser with the power at the sampling point typically at
20 mW; backscattering radiation was collected by a Renishaw System
100 instrument (Renishaw plc, New Mills, Wotton-under-Edge, Glouc-
estershire GL12 8JR, U.K.) (25, 26). Each oil was pipetted into a 4
mL Supelco vial (Supelco Park, Bellfonte, PA). The vial was placed
into a pre-fixed sample holder such that the laser was focused into the
center of the vial (12 mm from the collection lens), as detailed elsewhere
(27). Samples were analyzed in quadruplicate. Spectra were collected
for 2 min over the spectral range 1000-3000 wavenumbers (cm-1) at
a resolution of about 6 cm-1. Calibration was periodically checked by
recording the position of known Raman lines of a silicon wafer (520
cm-1), and the wavenumber accuracy was estimated to be(1 cm-1.
All data were exported from the GRAMs WiRE software used to control
the spectrometer into Matlab (The Mathworks, Inc. Natick, MA) for
data analysis.

Data Analysis. The measured signal for each oil sample has two
contributions, Raman scattering and fluorescence, and the latter was
subtracted as follows: the baseline of each spectrum was approximated
by a fifth-order polynomial, and this polynomial contribution was
subtracted from each raw spectrum, resulting in flat baseline spectra.
Spectral preprocessing also included data denoising using a five-point
moving mean filter and was normalized to the highest peak, which for
all oils occurred at 1427.0 cm-1; this band was assigned to the
scissoring-bending mode of-CH2 groups (16).

Data presented in this work (generated by Raman spectroscopy)
consist of the results of the observations on a number of samples with

many different variables (Raman shifts). Each variable may be regarded
as constituting a different dimension, such that if there aren variables,
each object may be said to reside at a unique position in an abstract
entity referred to as ann-dimensional hyperspace. Thus, the data
generated by Raman spectroscopy has a multidimensional character,
or what has often been called a hyperspectral nature (28-31). Analysis
of data with such characteristics is generally analyzed by multivariate
analysis methods. Principal component analysis (PCA) (32, 33) is a
well-known method used to reduce the dimensionality of the data and
was used to assess the ability of Raman data to discriminate between
different oil samples according to either their origin or their composition.
PCA was performed in Matlab using the NIPALS algorithm (34). As
mentioned above, the spectra were collected in quadruplicate; thus,
repeatability of the spectra was assessed by calculating, for an oil sample
and in the first two principal components’ space, the mean distance to
the group center, which was typically by (7.47( 0.78)× 10-4.

Partial least-squares (PLS) regression (35) is a quantitative spectral
decomposition technique generally used for predictive linear modeling
and was employed to build a model to determine the concentration of
the adulterant oil(s) in the oil mixtures studied. PLS was performed as
detailed in (36) following the computations given in (35).

Although PLS is a popular method for the quantitative analysis of
biological systems, it is arguable whether PLS is capable of clearly
determining which are the crucial spectral features that the PLS routine
has employed to build prediction models. In this respect evolutionary
computational-based methods have recently been used (e.g. see (37,
38)) as a tool not only to determine the relationship between the spectra
and a particular property but also to identify the features of a given
spectra that are relevant for discriminatory purposes. Consequently,
further data analysis was performed by genetic programming (GP) (37,
39, 40)). GP is part of the “so-called” evolutionary computational
methods, which are based on the concepts of Darwinian selection to
generate and to optimize a desired computational function or math-
ematical expression to produce explanatory rules. GP was performed
using the genomic computing software Gmax-bio (Aber Genomic
Computing, Aberystwyth, U.K.). Details on the Gmax-bio software can
be found elsewhere (41). The default parameter settings for population

Table 1. Extra Virgin Olive Oils Analyzed

label cultivar locality region

D1 Dritta Bucchianico (CH) Abruzzo
D2 Dritta Bucchianico (CH) Abruzzo
D3 Dritta Pianella (PE) Abruzzo
D4 Dritta Pianella (PE) Abruzzo
D5 Dritta Spoltore (PE) Abruzzo
D6 Dritta Spoltore (PE) Abruzzo
F7 Frantoio Arpino (FR) Lazio
F8 Frantoio Canino (VT) Lazio
F9 Frantoio Citta’ S. Angelo (PE) Abruzzo
F10 Frantoio Citta’ S. Angelo (PE) Abruzzo
F11 Frantoio Saludecio (RN) Emilia Romagna
F12 Frantoio Saludecio (RN) Emilia Romagna
G13 Gentile di Chieti Atessa (CH) Abruzzo
G14 Gentile di Chieti Atessa (CH) Abruzzo
G15 Gentile di Chieti Guardiagrele (CH) Abruzzo
G16 Gentile di Chieti Guardiagrele (CH) Abruzzo
G17 Gentile di Chieti Scernı̀ (CR) Abruzzo
G18 Gentile di Chieti Scernı̀ (CH) Abruzzo
L19 Leccino Campli (TE) Abruzzo
L20 Leccino Campli (TE) Abruzzo
L21 Leccino Citta’ S. Angelo (PE) Abruzzo
L22 Leccino Citta’ S. Angelo (PE) Abruzzo
L23 Leccino Corropoli (TE) Abruzzo
L24 Leccino Corropoli (TE) Abruzzo
N25 Nera di Gonnos Gonnosfanadiga (CA) Sardegna
N26 Nera di Gonnos Gonnosfanadiga (CA) Sardegna
N27 Nera di Gonnos Gonnosfanadiga (CA) Sardegna
N28 Nera di Gonnos Gonnosfanadiga (CA) Sardegna
N29 Nera di Gonnos Gonnosfanadiga (CA) Sardegna
N30 Nera di Gonnos Gonnosfanadiga (CA) Sardegna
OOa Leccino Citta’ S. Angelo Abruzzo

a Used in the admixtures.
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size (1000) mutation, and recombination rates were used throughout.
The operators that were used were as follows:+, -, /, *, 0.1, 1, 3, 5,
rand, log10, 10x, x, tanh.

RESULTS AND DISCUSSION

Figure 1 shows typical Stokes Raman spectra of extra virgin
olive oil from the five cultivars considered here: Dritta,
Frantoio, Gentile di Chieti, Leccino, and Nera di Gonnos. Also
shown inFigure 1 are the labels of the major peaks in the
Raman spectra which are mainly due to the vibrations of
chemical bonds coming from triglycerides, and these are in good
agreement with previously published results from FT-Raman
spectroscopy (e.g. (16)). As can be seen, the spectral charac-
teristics of these oils are very similar, with the exception of the
shift in the peak at 1652.0 cm-1 in the sunflower oil to 1653.8
cm-1. The similarity of the spectra indicate the significant
chemical similarity between the oils, and this is consistent with
the fact that fatty acids may account for the 98% of the content
of an olive oil (5). Despite these common spectral features,
variations in the chemistry between these oils are expected to
arise from several factors (7), including cultivar, soil, climate,
storage conditions of the fruit or nut, and extraction processes.

The first experiment involved the spectral characterization
of a selection of 30 extra virgin olive oils from five different
Italian cultivars (seeTable 1), and in order to assess geographi-
cal origin as well as botanical origin, samples were chosen so
that oils from the same cultivar came from three different
localities. To assess the natural variation in these 30 olive oils
as measured from their Raman spectra, the unsupervised learning
method of PCA was employed. While the plot representing the
first two principal components (Figure 2) shows that the cul-
tivars are not recovered into five separate clusters, it is signif-
icant that the replicate spectra did cluster together, indicating
the reproducibility of the Raman approach. In addition, it is
notable that the oils from the Sardinian region appear to be
separated from the rest, which all come from the Italian penin-
sula. Most research concerned with the olive tree generally
agrees that the genetic properties of a given oil are more
important in determining the oil’s molecular composition, rather

than the soil and climatic conditions. However, this result
suggests otherwise, and although the cultivar of the individual
olive oils is known, these cannot be assumed to be isogenic,
which coupled with the differing soil, climate, and storage
conditions may suggest that the chemical composition of each
of the oils is in fact unique.

Next, a collection of hazelnut oils was analyzed as detailed
above (Table 2). PCA on the Raman spectra from these nut
oils does show some separation according to geographical origin
(Figure 3). The oils from Turkey (H8 and H9) are clearly
separated in the first PC from the other oils, and the hazelnut
pomace oil (H9) can be separated from the hazelnut oil (H8).
Moreover, it is possible to separate the oils from the Italian
peninsula (H1, H3-H7) from the single hazelnut oil from Sicily
(H2). To assess the similarity between the hazelnut oils and
the extra virgin olive oils, the Raman spectra of a subset of the
extra virgin olive oil collection together with the hazelnut
collection were collected and analyzed by PCA. The subset of
extra virgin olive oil consisted of two samples from each
cultivar, whereas the whole hazelnut collection (H1-H9) was
used in this experiment. The resultant ordination plot is shown
in Figure 4. This figure shows that the hazelnut oils are
recovered together in a tight cluster, while the virgin olive oils
are separated from the hazelnut oils. Since the Raman spectra
are determined by the chemical composition of the oils, the result
plotted inFigure 4 seems to indicate that the hazelnut oils show

Figure 1. Typical Raman spectra from five different olive oils, hazelnut
oil, and sunflower oil. Band assignments are as in (16): 1075 cm-1,
C−C stretching, group −(CH2)n−; 1263 cm-1, dC−H bending, group cis-
RHCdCHR; 1298 cm-1, bending (twisting), group −CH2; 1440 cm-1, C−H
bending (scissoring), group −CH2; 1652 cm-1, CdC stretching, group
cis-RHCdCHR; 1741 cm-1, CdO stretching, group RCdOOR; 2851
cm-1, C−H stretching (sym), group CH2.

Figure 2. PCA plot for the Italian extra virgin olive oil collection. Principal
components 1 and 2 are shown; these account for the 49.89% of the
total explained variance (e.v.). The variance shown by each component
is given in parentheses in the axis labeling. Note that the Sardinian oils
appear to cluster together (indicated by the ellipse), separating from the
oils coming from the Italian peninsula. The ellipse is drawn as a visual
guide.

Table 2. Hazelnut Oils Used in This Studya

label cultivar region/country

H1 Mortarella Avellino Campania
H2 Moltalbano Nostrale Sicily
H3 Tonda Gentile Romana Lazio
H4 Tonda Gentile Delle Langhe Piemonte
H5 Tonda Di Giffoni Salerno Campania
H6 common hazelnut oil Avellino Campania
H7 Tonda Gentile Delle Langhe Piemonte
H8 common hazelnut oil Turkey
H9 hazelnut pomace oil Turkey
HZb refined hazelnut oil Turkey

a All oils obtained from unroasted nuts. b Oil used in the admixtures.
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high (chemical) similarity to one another and that the olive oils
are more chemically distinct not only from the hazelnut oils
but also from one another. Despite differences within virgin
olive oils, on closer inspection, with this reduced set from the
whole collection, some evidence of clustering according to
cultivar can be observed.

The results described above suggest that Raman spectroscopy
might be able to detect the presence of hazelnut oil in extra
virgin olive oil samples. To assess this possibility, the spectra
of 21 binary mixtures (composition range 0-100% of olive oil
in 5% steps) were collected in replicate (×4). In the first stage
of the analysis PCA was applied to the processed Raman data,
and it was found that two PCs accounting for 82% of the total
explained variance successfully separate the mixtures according

to composition (Figure 5). This strongly suggests that these
Raman spectra contain biochemical information that will allow
correlation of pertinent spectral features with the concentration
of the adulterant. Therefore, subsequent supervised learning
analyses using PLS and GP were used to build a model to quan-
tify the level of hazelnut adulteration in extra virgin olive oil.

The data were split into a training (or calibration) set and a
test set. The training set consisted of replicate spectra containing
0, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100% hazelnut oil,
while the test set consisted of Raman spectra with 5, 15, 25,
35, 45, 55, 65, 75, 85, and 95% of the adulterant. PLS regression
was calibrated with the training set and cross-validated with
the test set. It was found that the best model (i.e. lowest
prediction error in the test set) occurred when five latent
variables were used. The plot of the PLS estimates versus the
known concentration (Figure 6) shows good predictions for both
the training data and the test set. Moreover, close inspection of
the model indicates that the composition of the mixture can be
successfully predicted in the range of commercial interest,
0-20%. In addition, GPs were also evolved to predict success-

Figure 3. PCA plot for the hazelnut oil and olive oil collection. The two
principal components account for the 72.29% of the total explained
variance. The variance shown by each component is given in parentheses
in the axis labeling. Note that the oils which come from the Italian peninsula
appear to cluster together, separating from the oils coming form Sicily
and Turkey. Ellipses are drawn as visual guides.

Figure 4. PCA plot for the hazelnut oil collection including some extra
virgin olive oils. Principal components 1 and 2 account for the 91.29% of
the total explained variance The variance shown by each component is
given in parentheses in the axis labeling. Ellipses indicate which oils are
hazelnut oils or which extra virgin olive oils come from the same region.

Figure 5. PCA plot for the extra virgin olive oil−hazelnut oil mixtures. As
can be seen, Raman data can separate the mixtures according to
composition (0−100% hazelnut oils).

Figure 6. Estimates from PLS versus the true concentration values of
hazelnut oil present in an extra virgin olive oil sample. The calculated fit
on test set results is y ) 0.974x + 0.756 and R2 ) 0.979. RMSEP
values of 4.16 and 0.94 were found for the calibration and validation sets
respectively.
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fully the adulterant level in the extra virgin olive oil (Figure 7
shows a typical GP rule), with an RMSEP value similar to that
for the PLS predictions (0.98).

It has been argued that while the quantitative results obtained
from PLS are excellent, the models produced are not easily
interpreted (38). That is, it is not obvious how this method
exploits information specifically in terms of the values of the
different input variables (i.e. Raman shift, in this case). Thus,
the PLS-1 loadings as well as the number of times each input
(Raman shift) was selected by GP (from 25 evolved populations)
was calculated and plotted against the Raman shift (Figure 8).

It appears from this figure that no single input variable was
selected by either PLS or GP and that both methods used the
whole spectra to map from the Raman spectrum to the level of
the hazelnut oil adulterant. This finding suggests that in terms
of their Raman spectra hazelnut oil and extra virgin olive oil
are very similar, and this reflects their very close chemical sim-
ilarity to one another. This is perhaps not surprising, considering
that these spectra are dominated by the triglyceride vibrations,
and these appear to mask any subtle spectral differences that
may arise from other chemical species. Furthermore, it can be
seen from the typical GP tree (Figure 7) that the rule is complex,
and as a single chemical is not important, the information is
spread across the whole Raman spectrum.

CONCLUSION

It has been shown that Raman data can successfully distin-
guish between closely related extra virgin olive and hazelnut
oils and therefore aid in their identification. Moreover, the
composition of hazelnut and extra virgin olive oil mixtures could
be accurately predicted using either PLS regression or the more
sophisticated computational method of GP. In conclusion,
Raman spectroscopy, together with appropriate chemometrics,
presents itself as a powerful tool for the authentication of extra
virgin olive oil; moreover, the method used here represents a
step toward the more difficult detection of hazelnut oil in other
olive oils: e.g. pomace and lampante olive oils. Further work
will include the study of such mixtures as well as different
ranges of concentration to accurately determine lowest concen-
tration of hazelnut oil that can be detected by Raman spectros-
copy.
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